
Instructional Science 29: 337–359, 2001.
© 2001 Kluwer Academic Publishers. Printed in the Netherlands.

337

Modeling and supporting the authoring process of multimedia
simulation based educational software: A knowledge engineering
approach

MICHIEL KUYPER1, ROBERT DE HOOG1,2 & TON DE JONG2

1University of Amsterdam, Faculty of Social and Behavioral Sciences, Department of Social
Science Informatics, Roetersstraat 15, 1018 WB Amsterdam, The Netherlands (E-mail:
dehoog@swi.psy.uva.nl); 2University of Twente, Faculty of Educational Technology,
Department of Instructional Technology, P.O. Box 217, 7500 AE Enschede, The Netherlands
(E-mail: r.dehoog@edte.utwente.nl, a.j.m.dejong@edte.utwente.nl)

Abstract. Traditionally, support for authoring educational software focuses on the authoring
process: the nature and sequence of the activities that must be performed to deliver the required
product. As a consequence, the methods that are used tend to have a strong linear flavor,
which resembles the classical waterfall approach. Development strategies as currently used in
software engineering shift the attention from activities to products (see De Hoog et al., 1994).
A general implementation of this approach can be found in the CommonKADS methodology
(see Schreiber et al., 2000). The present article describes how this new development approach
has influenced the design of an authoring system for multi-media simulation based educational
software, the SIMQUEST authoring system.

Keywords: authoring process models, authoring products models, knowledge engineering,
knowledge models, wizard

The SIMQUEST authoring system

SIMQUEST is an authoring system for designing and creating simulation-
based learning environments. The unique character of SIMQUEST learning
environments is that they include support for the discovery processes of the
learner. This support consists of explanations, assignments, a monitoring
tool, and the use of model progression. In SIMQUEST learning environ-
ments a designer has to try to find a balance between direct guidance of the
learning processes and sufficient freedom for learners to regulate the learning
processes themselves. The learner aspects of SIMQUEST have been extens-
ively studied; reports can be found in De Jong et al. (1996, 1998, 1999) and
Swaak et al. (1998).

Technically, a SIMQUEST learning environment consists of (a) a simula-
tion model (or simulation models) needed to run the simulation, (b) one or
more user interfaces to this model, (c) a collection of instructional supports,



338

Figure 1. Example of the author interface of SIMQUEST, with the library (including
sub-libraries to the left), and an application being built to the right.

and (d) a specification of the control flow in the learning environment (this
control flow sets for example the sequence in which learners have access
to specific assignments). The authoring process in SIMQUEST is an object
oriented one. In SIMQUEST the author creates a learning environment by
selecting building blocks from a library, instantiating and specializing them,
and using them in a learning environment. The library contains pre-defined
building blocks of simulation models, interfaces (and interface elements) to
those models and instructional measures.

Figure 1 displays an example of a learning environment under construc-
tion. To the left the library of building blocks is displayed, to the right an
application seen from the author’s perspective is given (the authors may
simply toggle between an author and a learner view). The library consists
of predefined templates that can be used to create the instructional simula-
tion. Examples are: assignments, small exercises for the learner; animation
elements for building the interface. The author drags building blocks (e.g.,
animation elements or assignments) from the library to the tab sheet in the
application window and uses editors on the building blocks to specialize



339

them. The tabsheets in the application part in Figure 1 list all the elements
(model, interface, assignments, explanations etc.) at model level 2 of this
application. Elements are organized according to model level (where models
can, for example, increase in complexity). After having selected building
blocks from the library these building blocks have to be adapted to the current
application (this is the specialization), which means setting preferred proper-
ties and filling in the domain content. Figure 1 shows, as an example, the
editor on a so-called ‘specification assignment’. For creating such an assign-
ment the author only ‘walks’ through all the tab-sheets of an editor and fills
in the relevant data. The general design of the assignment is incorporated in
the editor. All different types of assignment in SIMQUEST have their own
dedicated editor. Further information on the SIMQUEST environment can be
found in Van Joolingen et al. (1997) and De Jong et al. (1998).

The SIMQUEST authoring system has been subject to an extensive evalua-
tion with authors. Throughout its development, pilot authors have been
using intermediate versions of SIMQUEST and provided the development
team with bugs, questions, and feedback. From the initial author evaluation
studies (see Kuyper, 1998; Kuyper et al., 1995) it was concluded that the
gap between subject matter knowledge and the primitives of the authoring
tool was too large. Authors not thoroughly familiar with SIMQUEST were
not able to bridge this gap. The solution the authors have chosen is based
on the notion of intermediate products between the author’s knowledge and
the SIMQUEST authoring primitives. These intermediate products are repre-
sented by means of so-called knowledge models. As a result of introducing
knowledge models, the SIMQUEST environment was enhanced by a support
mechanism (a ‘wizard’) which acts as a performance support system for
developing the instructional simulation by the ‘implicit’ building of these
intermediate products. Figure 2 shows the specific framework for supporting
authoring in SIMQUEST.

Figure 2 can be rephrased in terms of two main concepts:
1. The authoring process: the activities performed by the author to achieve

the authoring goals
2. The authoring products: the models needed to bridge the gap between the

authoring environment and the authoring domain.
The next section is devoted to a characterization of the authoring process

following principles from knowledge engineering. The authoring products
are briefly described in the section on modeling the authoring process. The
mapping of process and product on the SIMQUEST wizard is explained in
the section on mapping models on support. The paper concludes with some
observations and recommendations.



340

Figure 2. Framework for supporting authoring in SIMQUEST.

Modeling the authoring process

The perspective chosen for modeling the authoring process is to view it as
a knowledge intensive task, that is, consisting of reasoning steps that require
inferences to be made about the domain under consideration.

The characteristic feature of SIMQUEST is the availability of elementary
building blocks for modeling, interfaces, and instructional support (see the
previous section). This authoring process based on building blocks can
be described by using from the CommonKADS methodology pre-defined
generic tasks,1 for which basic models have been developed and tested (see
Schreiber at al., 2000; Breuker & Van de Velde, 1994). The authoring task in
SIMQUEST is a case of design in which the elements from which the design
is built are given. This type of task is called a configuration task.

Top and Akkermans (1994) describe a configuration task for computer-
aided physical engineering. In this task they see the design process as
consisting of three main steps: specification of requirements starting from
the design objectives, building-block based construction of the application
on the basis of requirements, and the assessment of the application in light
of the objectives. This is an iterative process, which they call evolutionary
modeling. There is a clear influence from the construction process back to the
specification process; the design process can be seen as gradual refinement
of requirements as the structure of solutions emerges. Figure 3 depicts an
adapted version of Top and Akkermans’ model, for authoring in SIMQUEST.

The elongated ovals represent reasoning steps the author has to perform.
The rectangles represent the results of these reasoning steps and the compon-
ents available as input for these reasoning steps. The open rectangles cover the



341

Figure 3. A generic model of authoring based on building blocks; components corresponding
to elements present in SIMQUEST are indicated in grey.

knowledge (support knowledge) needed to carry out the associated reasoning
steps. As the focus in this section is on the reasoning steps specify, select,
specialize, integrate, assess, they are elaborated below.

Specify. On the basis of the design objectives a set of requirements is
specified. Design objectives are formulated in terms of a state that needs to
be achieved. In our case the author wants the learner to understand certain
subject matter knowledge. This is usually formulated in terms of instructional
objectives, the knowledge and skills that should be acquired by the learner.
In the specification process the objectives are translated into requirements,
which describe the behavior of the system and how this behavior should lead
to the accomplishment of the objectives.

Select. In configuration design, predefined solutions – building blocks – are
available for making a system behave in certain way. An important step in
the design process is selecting the appropriate solution for a particular sub-
problem; i.e. requirement. The selection step is constrained by the available



342

building blocks; this requires knowledge about the different types of building
blocks. The selection step is supported by knowledge of instructional design.
The selection step delivers a generic building block – a template – which
needs to be filled with subject matter knowledge, and which needs to be
combined with other building blocks to achieve overall system behavior.

Specialize. Filling a selected generic building block with subject matter
knowledge is called specialization of a building block. As indicated, subject
matter knowledge plays a support role in this step.

Integrate. In the integrate step, the building block from the specialize step
is related to other building blocks. The overall structure of building blocks
makes up the application. Again this process is supported by knowledge about
instructional design.

Assess. Both the specialization and integration steps produce solutions for
the design problem, both at a different level. Whether the solutions fulfill the
initial requirements needs to be assessed. The assessment step often leads to
the alteration or refinement of requirements, because chosen solutions bring
new insights to the surface.

The non-linear, cyclic nature of the reasoning process described above
is not directly represented in Figure 3, as, according to CommonKADS,
the control over the reasoning process is written out in a separate layer.
For Figure 3 this would entail a repeat . . . until like structure in which the
reasoning steps and their inputs and outputs appear in a kind of pseudo code.

The generic model in Figure 3 reasons of course about a domain, which
provides the ‘content’ to the elongated ovals and rectangles. The authoring
products constitute the domain of the process model described in Figure 3.
The next section is devoted to the modeling of this domain, i.e. the authoring
products.

Modeling the authoring products

The entities bridging the gap between the authoring domain and the authoring
environment are the (intermediate) authoring products, labeled ‘knowledge
models’ in Figure 2.

In order to develop these models, the domain, or the ‘design space’, has to
be carved up in smaller chunks. This makes control over the authoring process
and products easier. There are many different ways to do this. The authors
simply adopt the four models distinguished by Kuyper (1998) and refer the
interested reader to this source for an in depth discussion of the arguments



343

for choosing these four. Below a short description each of the models will be
given.

Instructional model

The instructional model covers those aspects that are relevant from the
learning point of view. It represents the most important dimensions mentioned
in the literature:
1. The structure of concepts: the decomposition of learning goals into

subgoals
2. Partial solutions: learning goals and instructional actions can be seen as

design objects having generic attributes which must be instantiated for a
specific context

3. Concept dependencies: the relation between the instruction and the
simulation’s complexity

4. Time relations: the phasing and timing of instructional actions

Simulation model

The simulation model is directed at developing the simulation but takes into
account that this model should be used for instruction. It offers guidance to
represent different relevant aspects of a simulation model for instruction.
Firstly, aggregates of variables support a structured decomposition of the
model, that enables the representation of concepts that can be used in an
instructional context for reasoning about system behavior. Secondly, critical
states identify important shifts in system behavior. Thirdly, making explicit
the modeling assumptions indicates relevant constraints of the application
of the formal model. All three aspects serve as important resources for the
decomposition of learning goals and inspire the design of experiments.

Interaction model

Another aspect of authoring is the visualization and manipulation of the
simulation and instructional support. Both the simulation model and the
instructional model offer little information about the knowledge required
for authoring the interaction between their elements and the student. To
bridge the gap with the applied knowledge used in authoring with a specific
authoring environment, it is necessary to align to the interaction possibilities
this environment provides. The interaction model captures the interaction
elements that are available to the learner and models how through the use
of scenarios a preliminary understanding of application functionality can be
developed.



344

Figure 4. General frame for representing model structures.

Context model

Although we do not aim to model the organizational context in which an
instructional simulation is applied, we cannot neglect the context in which it
is developed. Educational programs are formally set up according to attain
objectives specified by national institutes that make educational policies.
To integrate instructional means such as an instructional simulation into an
educational program it has to comply with one or more of the objectives that
are applicable to that program.

The description of the models given above is discursive in nature; it’s hard
to figure out what their structure is. As any model is a set of concepts and
the relations between these concepts, making the models more precise entails
specifying the concepts and their relations. In the framework of SIMQUEST

the four models sketched above have been modeled in great detail (see
for comparable models in CommonKADS, De Hoog, 1997) to permit a
consistent mapping of the intermediate products on the behavior and appear-
ance of the authoring support wizard. In order to illustrate this preciseness,
one model will be shown in more detail. For the other models the reader
is referred to Kuyper (1998). The graphical presentation of models will be
depicted as shown in Figure 4.



345

In Figure 4 rectangles represent the concepts in a model, a concept can
have attributes, which describe relevant features of the concept. Relations
between concepts are of the following types:

a) Part-of-relation (a diamond on the line relating concepts).
b) Sub-type relation (an open arrowhead on the line relating concepts, not

present in the examples).
c) Directional binary relation (a small black arrowhead on the relation plus

the name of the relation).
d) Rule schema relation (two small black arrowheads, interrupted by text

and linked to an oval).

This last relation type are schemas that are used to provide knowledge
when the nature of an element will strongly influence the nature of another. It
can be seen as an annotation on a relation between two concepts.

Although these models demarcate separate parts in the domain there are
many dependencies between them. To indicate the dependencies between
models in the graphical notation, the relevant model elements of neighboring
models will be displayed as well. The demarcations between the models
are indicated by a dotted line. Also the model elements that correspond to
building blocks in the authoring environment are tinted in grey, while model
elements that are part of the authoring knowledge but do not reside in the
support environment are transparent. We will take one of the simpler models,
the context model, as an example. This context model describes the relation
between the application and the environment in which it has to function.

The organizational context in which we considered instructional simula-
tion development to take place is Senior Secondary Vocational Education.
In this type of education, classes mainly consist of formal lecturing and
practicals. Education is organized according to educational objectives that
are nationally determined. Within the scope of these instructional objectives,
teachers determine what learning material is used and how to test the accom-
plishment of specific instructional objectives. Instructional simulations can
be used in this context to bridge the gap between theory and practicals.
Subject matter theory is often very abstract for learners and lacks a dynam-
ical or visual representation. Practicals help to train procedures and learning
about real-life contexts, but often fail to connect to theoretical insights. For
example, in the domain of construction mechanics the understanding of
stressing a beam requires a complex visualization of stress events present
in the beam. The theory can deliver formulas to calculate certain measures
needed in practice and in practicals measurement instruments can be used
to show the value of these measures, but still the underlying model of what
these measures represent and how these are related might be unclear for the
learner. Instructional simulations can deliver just these insights by an abstract



346

Figure 5. Structure of the context model.

visualization of reality and as such are useful tools in education. A simulation
can be used to show the stress in the beam by means of changing colors and by
showing measured values at the right places. The introduction of instructional
simulations in the curriculum is part of a trend towards ICT-based (Infor-
mation and Communication Technology) learning and fits in with views on
education which advocate independent learning.

Instructional simulations are not meant to replace formal lecturing, but
rather to enhance certain parts of it with dynamic representations of hard
to show underlying processes. This has repercussions for support teaching
and instruction. Support needs to enable the integration of an instructional
simulation with the current practice of teaching. An instructional simula-
tion development environment has to support the use of similar terminology,
formulas and visual metaphors to fit the choice of existing textbooks. In addi-
tion it has to provide for visualization building blocks that transfer to the
situation used in practicals. It has to fit in with the instructional objectives
imposed on students. Therefore, support should enable the mapping from
these objectives to learning goals. The rationale behind this model is therefore
that context requirements need to be related to the general characteristics of
the application.



347

The context model is depicted in Figure 5. The context model consists
of the following concepts: application description, instructional objective and
application set-up. Each of these concepts is characterized by a set of attrib-
utes (e.g. ‘Key’ in application description), which can be seen as a more
detailed description of the concept. Furthermore, in the context model the
concepts are connected to each other through relations like ‘operationalizes’.

Concepts

1. The Application description is an aspect that is used in the early phases
of development for communication between different parties in develop-
ment; i.e. subject matter experts, instructional designer, project managers,
etc. It states the overall objectives of the application and the need that
it satisfies. It sketches the target learner group which is going to be
served by the application and describes the prerequisite knowledge to
enter the application and how it is embedded in current learning material.
For Middle Vocational Training the ‘need for application’ attribute could
be filled by something that was written above: Instructional simulations
can be used in this context to bridge the gap between theory and prac-
ticals. Subject matter theory is often abstract for learners and lacks the
support of a dynamic or visual representation. Practicals help to train
procedures and learning about real-life contexts, but often fail to connect
to theoretical knowledge.

2. The Instructional objective represents the overall goal that needs to be
reached by the learner. Instructional objectives are determined nation-
wide for particular educational programs and have a fixed structure.

3. The Application set-up describes the contents of the application as it is
presented to the student and presents an overall framework for building
the application.

Relations

There are two types of relations in Figure 5: unsupported relations and rule
schema supported relations. The unsupported relations are:
1. Application set-up operationalizes Application description. The appli-

cation description is a mission statement about the application; it does
not contain any design decisions. The application set-up does embody
design decisions based on the instructional objectives in the Application
description.

2. Formal representation differentiates Instructional objectives. When the
details of the formal representation are investigated different topics of
interest arise which specify the original objective in greater detail.



348

Two-rule schema supported relations in Figure 5 are:
1. Instructional objective determines form of system interface. An asso-

ciated support rule is: if the procedure to be learned is physical then you
should choose an enactive (3 dimensional) or iconic (video or graphics)
representation form (cf. Reigeluth & Schwarz, 1989)

2. Instructional objective determines set up of model progression level. An
associated support rule is: if the objective is to learn a principle then you
should require the learner to manipulate examples, observe cause and
effects, and figure out the principles during the acquisition stage and play
a role applying the principles during the application stage (cf. Reigeluth
& Schwarz, 1989).

The context model sketched above is the simplest model that was
developed; the other model structures are far more complex. The instructional
model, for example, contains 16 concepts and 25 attributes. Relations in the
model and between other models number more than twenty. The important
thing to realize is that this level of detail and precision in the models permits
a far clearer understanding of the nature of the authoring products than the
discursive description given earlier. It is this precision that permits a theoreti-
cally underpinned design of the authoring wizard, which will be the topic of
the next section.

Mapping models on support: The SIMQUEST Wizard

In the previous two sections models were presented for the authoring process
and the authoring products that form the bridge between the authoring domain
and the authoring tool, as shown in Figure 2. This leaves the rightmost part
for further elaboration: mapping the intermediate products and the generic
process on the SIMQUEST environment. To support this a ‘Wizard’ was
developed. The Wizard addresses three parts: mapping the products, mapping
the process and connecting products and process.

Mapping the products

The models have three main features (see Figure 4), which should be taken
into account when mapping them on a support environment:
a) Relations, in particular part-of or hierarchical relations between concepts
b) Attributes of concepts
c) Rule schemes

Below, their implementation in the SIMQUEST Wizard is elaborated.



349

Figure 6. Representation of a part-whole structure in the wizard environment.

1. Hierarchy, part-of-relations
An important feature of knowledge/product models is that they incor-
porate the hierarchical structure of a product. According to Norman’s model
(Norman, 1986) this represents a decomposition of working goals. A way to
afford this decomposition of goals is by representing the conceptual part-
whole structure described by product models as an on-screen part-whole
structure in the system interface. In the SIMQUEST wizard environment a
specific textual tree structure is used, that was available in the VisualWorks�

programming environment2 (see Figures 1 and 6).
The part-whole structures in product models represent coherent groups

of concepts based on studies of best practices. The coherency in product
models should be reflected in the organization of application components;
i.e. a coherent set of components should also be presented in a spatially
coherent way. Figure 6 shows how the part-whole structure is embedded in
the SIMQUEST wizard environment.

The product models described in the Section Modeling the Authoring
Products represent intermediate as well as final authoring products. If the
author conceptually works on these products they should be explicitly repre-
sented in the system interface. A good example is a learning goal; although a
learning goal is not necessary to run the system, every author at least has given
some thought to the instructional purpose of assignments and experiments.

2. Model attributes and intramodel dependencies
The attributes of a model concept refer to its generic properties that reoccur
in different instructional situations. The detailed models that have been
developed, like the Context model in Figure 5, predefine these generic proper-
ties. Each attribute of a concept in a model has to be presented explicitly in the



350

Figure 7. The representation of model concept attributes in the wizard environment.

system interface. In the wizard environment, the attributes of an application
component are represented by text fields (see Figure 7).

Furthermore it is of importance that the role of the attribute can be related
to the context in which it is used. In the wizard environment text fields
are presented as a result of the selection of a component in the application
structure (shown in the left-hand side of Figure 7).

The intramodel (i.e. within one model) dependencies are dependencies
between attributes that are part of the same model concept. These dependen-
cies express prerequisite or suggestive relations; information to specify one
attribute is required or desired to specify the information in another attribute;
i.e. thinking about the unit of a variable helps estimating the initial value.
The dependencies are represented in the SIMQUEST wizard environment by
the order and layout of the fill-in fields. The lay out of the attributes (right-
most part) in Figure 7, from top to bottom, indicate that before the author can
specify the Start value of a variable (Carrying capacity), the Unit (‘Eenheid’)
for the variable has to be specified. These dependencies are either strong
or weak: when they are strong a fill-in field is not accessible before the
predecessor field is entered.

3. Rule schemes
Rule schemes represent design dependencies, which are intermodel depend-
encies (i.e. between models). An example of such a dependency in the
authoring process might be: in an introductory situation offer learners a set of
start situations so that they do not have to think of these settings themselves.
In an advanced situation only give dedicated start situations. In the context
of SIMQUEST this dependency holds, for example, between the role of an
experiment and the type of assignment that is chosen. Providing the author
with the relevant knowledge to apply such a rule is a form of decision support.



351

Figure 8. The representation of rule schemes in the wizard environment.

In addition to the mapping rules that hold for representing decision rules, it
can be said that knowledge modeling can be used to make implicit expert
knowledge about design rules explicit and helps to transfer part of the design
task from the user to the system.

The author has to be made aware that there is a relevant decision to make,
therefore it has to be explicitly represented. In the SIMQUEST wizard this is
achieved by means of a separate step in the wizard sequence. The decision
support should be presented at the time and in the context where the decision
has to be made.

In Figure 8 the effect of a rule schema being operational in the Wizard is
shown.

In Figure 8 the author has decided to create a guided experiment. In the
middle part of the window the support knowledge available for this step
appears. The right part of the window gives the decision options (one or
multiple start situations) which are presented in the middle part.

After the decision has been taken, the effect should be made explicit to
the author. In the situation depicted in Figure 9 a certain type of assignment
(Explicitation assignment) is suggested, based on the decision in Figure 8 to
have a Guided experiment with multiple start situations.

Mapping the authoring process onto the wizard

As was described in Sections 1 and 2, the main steps in working with
components supported by SIMQUEST are selecting a concept, instantiating
its attributes and relations, and linking it to other concepts. Especially the
selection and linking steps are usually hard to support because they are
dependent on a specific application context. The use of predefined model



352

Figure 9. The representation of consequences of applying a rule in the wizard environment.

structures makes a way of working possible; i.e., the expansion of models
and the specialization of its concepts and relations.

In a model a part-whole structure is decomposed until a model concept
can be described solely by its attributes. Creating a concept’s parts is labeled
as an expansion activity, while instantiating a concept’s attributes is called
specialization. In the SIMQUEST wizard environment expansion results in
the addition of components in the application structure, while specialization
is supported by a plan of steps in which fill-in fields can be filled (see left-hand
part and right-hand part of Figure 7 respectively). When to offer expansion
and when to offer specialization support can be deduced from the decomposi-
tion of the part-whole structure. The different manipulation activities should
be consistently represented and visibly indicated in the system interface. The
expansion activity in the wizard environment is implemented by providing
a checkbox with a tick mark and pushing the button Next or Finish. The
specialization activity is implemented by filling text fields and pushing the
button Next or Finish.

The wizard environment operationalizes this way of working, but it
requires an adaptation of the original process model as represented in
Figure 3. This led to a new process model shown in Figure 10.

This process model is informative for the design of the wizard environ-
ment. How some of the reasoning steps from Figure 10 are supported in the
wizard environment is shown in Figure 11 (the expand step) and Figure 12
(the specialize step).

Connecting product and process: model states

In the modeling approach of CommonKADS the notion of model states is
used to connect a product view (models) with a process (authoring) view.



353

Figure 10. A revised authoring process model operationalized by the wizard environment.

Figure 11. The representation of the expand step in the wizard environment.

Figure 12. The representation of the specialize step in the wizard environment.



354

A model state should be seen as a kind of snapshot in time reflecting the
condition of a model and its components (concepts, attributes and relations).
From a particular model state only a limited number of steps is possible,
thereby affording and constraining process execution. Executing a step leads
to changes in the model state (and possibly others), which means a refinement
of the product. This new model state opens up new steps, which will lead to a
further product refinement. The process therefore generates its own progress
possibilities. This approach is especially suited for providing guidance for
ill-structured tasks in which the precise execution of activities is difficult to
prescribe. By setting out the goal structure of the task and by providing a
flexible computational architecture for refining it, activities can be executed
as new insights occur. This provides for flexibility4 of the authoring process,
as proposed by De Hoog et al. (1994).

The expansion of an application component in the wizard environment, is
indicated by a plus/minus sign in front of its label. The sign indicates that its
subcomponents are displayed (minus) or hidden (plus). If the components do
not have any subcomponents, and are not expanded, no sign is visible. This
provides for a high level overview of the state of expansion of a model.

The Wizard plan for each model component, which entails expansion as
well as specialization, can be in one of three states, start, transition, and
ready. In the start state the specialization/expansion of a component has
not begun yet. In the ready state all steps have been taken. Any step in
between renders the process in a transition state. These states are indicated
by the different colors of the wizard pages (steps), yellow for start, green for
transition and red for ready.5 In addition each component in the application
structure has a colored dot in front of its label, corresponding to its state. The
latter aspect takes care that the state of the component is recognizable, even
when it is not selected.

Figure 13, Figure 14 and Figure 15 show how this notion of ‘colored’
states is implemented in the Wizard environment. The task is to create a
guided experiment.

In Figure 13 the start of creating a Guided experiment is shown. The right-
hand part of the window gives an overview of the activities and decisions
the author has to make. This prepares the author for what the authoring
environment is expecting as input.

In Figure 14 the author has started the work on the building of a
Guided experiment. The first attributes are instantiated (right-most part of the
window). The Green dot in the left-most part indicates that this concept is now
under construction. As interrupts occur quite frequently during authoring, for
example because the author realizes that some other work has to be done first
or simply the working hours are past, the Green dot is a reminder of work to



355

Figure 13. Start state of guided experiment.

Figure 14. Transition state of guided experiment.

do. This is important when applications are growing and it becomes hard to
keep track of what has been done and still has to be finished.

In Figure 15 the work on the Guided experiment is finished: a suitable
assignment (explicitation) has been constructed and the Red dot in the left-
hand part of the window shows that the concept has been fully instantiated.
In this way the author can always see at a glance what the state of the work
is.

A weak part of this representation is that the transition state is not differen-
tiated according to the type of activity; i.e. specialization or expansion. Nor



356

Figure 15. Finished state of guided experiment.

does the state of an aggregate component reveal any information about the
states of its subcomponents; i.e. in principle an aggregate component is ready
only when all of its subcomponents are ready. This must be seen as an issue
for further development.

Summary and conclusions

The approach sketched in this paper is an example of how the support for
authoring for simulation based educational software can be grounded in a
specific, semi-formal theory. The ‘look and feel’ of this kind of support
should not be derived from incidental, not to say accidental, hunches of inter-
face designers, but has to be based on an in depth analysis of the what and
how of authoring. This analysis can be approached fruitfully as a kind of
knowledge engineering activity and can benefit from advances made in this
area by the CommonKADS methodology. By taking up the basic ideas from
this methodology and tailoring it to the specific area under consideration, a
coherent set of intermediate products (models) and a generic process model
could be built. The level of detail achieved permits consistent mapping on a
Wizard which implements the basic processes and structures resulting from



357

the analysis. This Wizard facilitates the complex authoring task by specifying
products and actions to be build, and provides tailored advice for this task.
As a consequence the behavior and lay out of the Wizard is derived from a
theory instead of non-specific interface design guidelines which abound in
the literature (see e.g., Nielsen & Mack, 1994). This is not to say that these
guidelines have no value, but they should be seen as an adjunct to an in-
depth analysis as presented in this paper. This analysis can also be seen as a
case of modeling for usability and interaction design before one can move to
interface design.

The product and process models that were developed (though not all of
them were described in this paper) prove that authoring design products
and processes are amenable to more ‘formal’ definitions than the discursive
descriptions one usually encounters in the literature. The need to define fairly
general model structures for important areas of concern during design, forces
one to think hard about the precise nature of the concepts and relations
between concepts that constitute these models. In this respect an important
characteristic of our approach as compared to more traditional approaches
(e.g., Romiszowski, 1981) is that the results of the analyses directly feed
into the instructional material developed. Another difference with traditional
approaches is our emphasis on products instead of processes (see e.g., Smith
& Ragan, 1999). What our approach does not give is advice on how to
take specific instructional decisions (as detailed decisions within the overall
SIMQUEST philosophy). A separate module within SIMQUEST (the advice
module, see Limbach et al., 1999) houses the accompanying instructional
design theory (see Reigeluth, 1999) for discovery learning.

We do not intend to say that the models we have used are to be seen as the
final word. We can and will not claim these this are ‘the’ models for now and
forever, because they are at least to some extent specific for the SIMQUEST

context. However, we claim that the modeling approach followed can be and
should be re-used whenever design and development of authoring systems for
educational software is on the agenda.

Notes

1. A comparable approach for teaching has been advocated by Van Marcke (1998) in GTE
(Generic Tutoring Environment).

2. www.objectshare.com.
3. The topic of the next series of Figures is population ecology (predator-prey models).
4. A product-oriented way of working does not necessarily mean that alternative orders of

activities are always possible. The structures of products may constrain each other in such
a way that only one order may apply.

5. Cf. traffic lights where Green indicates Proceed and Red indicates Stop.



358

References

Breuker, J.A. & Van de Velde, W.A. (1994). The CommonKADS Library for Expertise
Modelling. Amsterdam: IOS Press.

De Hoog, R., De Jong, T. & De Vries, F. (1994). Constraint driven software design: An escape
from the waterfall model. Performance Improvement Quarterly 7: 48–63.

De Hoog, R. (1997). CommonKADS: knowledge acquisition and design support methodology
for structuring the KBS integration process. In J. Liebowitz & L. Wilcox, eds, Knowledge
Management and Its Integrative Elements, pp. 129–142. Boca Raton: CRC Press.

De Jong, T., Härtel, H., Swaak, J. & Van Joolingen, W. (1996). Support for simulation-
based learning; the effects of assignments in learning about transmission lines. In A.
Díaz de Ilarazza Sánchez and I. Fernández de Castro, eds, Computer Aided Learning and
Instruction in Science and Engineering, pp. 9–27. Berlin: Springer Verlag.

De Jong, T., Van Joolingen, W.R., Swaak, J., Veermans, K., Limbach, R., King, S. &
Gureghian, D. (1998). Self-directed learning in simulation-based discovery environments.
Journal of Computer Assisted Learning 14: 235–246.

De Jong, T., Martin, E., Zamarro, J-M., Esquembre, F., Swaak, J. & Van Joolingen, W.R.
(1999). The integration of computer simulation and learning support; an example from the
physics domain of collisions. Journal of Research in Science Teaching 36: 597–615.

Kuyper, M., De Hoog, R., Van der Hulst, A., Van Doorn, F. & Pieters, J. (1995). Final
Report on Pilot Testing of the Authoring Toolkit. Technical Report, Dept. of Social Science
Informatics, University of Amsterdam, Deliverable D33 of DELTA project SMISLE
D2007.

Kuyper, M. (1998). Knowledge Engineering for Usability. Model-mediated Interaction Design
of Authoring Instructional Simulations. Ph D. Thesis, University of Amsterdam.

Limbach, R., De Jong, T., Pieters, J. & Rowland, G. (1999). Supporting instructional design
with an information system. In J. van den Akker, R.M. Branch, K. Gustafson N. Nieveen
& T. Plomp, eds, Design Approaches and Tools in Education and Training, pp. 113–125.
Dordrecht: Kluwer Academic Publishers.

Nielsen, J. & Mack, R., eds (1994). Usability Inspection Methods. New York: Wiley.
Norman, D.A. (1986). Cognitive engineering. In D.A. Norman & S. Draper, eds, User

Centered System Design: New Perspectives on Human-Computer Interaction, pp. 31–63.
Hillsdale, NJ: Lawrence Erlbaum Associates.

Reigeluth, C.M. & Schwartz, E. (1989). An instructional theory for the design of computer
based simulations. Journal of Computer-based instruction 16: 1–10.

Reigeluth, C. (1999). Instructional-design Theories and Models. Mahwah, NJ: Erlbaum.
Romiszowski, A.J. (1981). Designing Instructional Systems. London: Kogan Page.
Smith, P.L. & Ragan, T.J. (1999). Instructional Design. New York: John Wiley.
Schreiber, A.Th., Akkermans, J.M., Anjewierden, A.A., De Hoog, R., Shadbolt, N.R., Van

de Velde, W. & Wielinga, B.J. (2000). Knowledge Engineering and Management. The
CommonKADS Methodology. MIT Press.

Swaak, J., Van Joolingen, W.R. & De Jong, T. (1998). Supporting simulation-based learning;
the effects of model progression and assignments on definitional and intuitive knowledge.
Learning and Instruction 8: 235–253.

Top, J.L. & Akkermans, J.M. (1994). Engineering modelling. In J.A. Breuker & W. van
de Velde, eds, The CommonKADS Library for Expertise Modelling, pp. 265–304.
Amsterdam: IOS Press.



359

Van Joolingen, W.R., King, S. & De Jong, T. (1997). The SIMQUEST authoring system
for simulation-base discovery environments. In B. du Boulay & R. Mizoguchi, eds,
Knowledge and Media in Learning Systems, pp. 79–87. Amsterdam: IOS.

Van Marcke, K. (1998). GTE: An epistomological approach to instructional modeling.
Instructional Science 26: 147–191.




