Knowledge Management Tools for

Instructional Design

L1 J. Michael Spector

Advances in computer technology typically
find their way into education after a short
generation of success in other settings. This is
an elaboration of one such
technology—knowledge management systems
(KMS)—and its application to instructional
design. An examination of the development of
KMS from information systems,
computer-supported collaborative work
environments and object-oriented systems,
leads to a discussion of reusability. The focus is
on the use of KMS by instructional designers.
A conceptual framework for distributed
instructional design is provided along with
examples of support tools. These tools and the
associated design framework are in use, and
anecdotal evidence of effects and impact is
provided. As such tools become more widely
used to support the planning, implementation
and management of instructional systems and
learning environments, it is reasonable to
expect the nature of instructional design
practice to change.

ETR&D, Vol. 50, No. 4, 2002, pp. 37-46 ISSN 1042-1629

[0 There are many educational research and
technology projects reporting a variety of out-
comes and lessons learned with regard to effec-
tive integration of technology into learning and
instruction (Dijkstra, Seel, Schott, & Tennyson,
1997; Spector, 1994, 1995; Spector & Anderson,
2000). What can we learn from these projects
and experiences? Is there a clear and coherent
instructional design framework for technology
enhanced learning environments? What are the
most promising approaches to instructional
design? Are there particular tools that can assist?
What kinds of evaluations will insure that the
process of designing such environments will be-
come progressively more effective?

The purpose of this paper is to suggest
answers to these questions. Technology integra-
tion in education is not a new concern.
Moreover, there are a number of dimensions to
technology integration. Its most obvious dimen-
sion in education is arguably that of instruction-
al delivery in the form of advanced learning
environments (e.g., simulators, virtual worlds,
etc.). The dimension of concern in this paper,
however, is that of instructional design. Instruc-
tional design itself is a large area ranging from
the assessment of needs and analysis of require-
ments through the planning and elaboration of
instructional solutions. The focus here is on the
impact of a new technology—knowledge
management systems (KMS)—on instructional
planning.

A KMS can be described as an integrated col-
lection of tools. Indeed, this is the typical depic-
tion of KMS in the computing literature. The
next section will provide a historical perspective
with regard to the development of key
knowledge management tools. These tools pro-
vide support for collaborative work, object

37

38

orientation, and reusability, each of which is dis-
cussed briefly. The subsequent section provides
a description of KMS that goes beyond a narrow
tool perspective and includes the user as an es-
sential part of the system. This is followed by an
example of the use of such a system to support
instructional design. The conclusions drawn
from this discussion are not totally encouraging,
however. While there is strong potential to use
knowledge management technology to improve
instructional design, the reality of instructional
design practice suggests that this potential may
not be fully realized for these reasons: (a) com-
peting instructional design firms are not likely to
openly share learning objects and corporate
knowledge; (b) instructional designers tend to
believe that instructional decision making is best
left to human experts; and, (c) some educational
theorists who advocate completely open-ended
learning and discovery environments believe
that instructional design has no place in educa-
tion (for an elaboration, see Spector, 1995).

A BRIEF HISTORY OF COMPUTING AND
INSTRUCTIONAL SYSTEMS

One way to characterize the development of
computer systems is in terms of generations of
languages and systems. Computer languages
are often represented as having progressed from
early machine-oriented code (bit-level or
hexadecimal representations of specific machine
instructions) to higher level and more abstract
representations.

Computer languages have clearly become
more abstract, more distant from specific
machine-level concerns and more oriented at
problem solving from the user’s perspective.
The conclusion that is enticing is that modern
computer languages make it possible for subject
experts without special training in software en-
gineering to create effective computer programs
to solve relevant classes of problems. This has
not happened to the extent predicted. As com-
puter languages have grown further from the
machine perspective and closer to the human
problem-solver’s perspective, there has not been
such a dramatic increase in the accessibility of
computer programming to larger and larger

ETR&D, Vol. 50, No. 4

groups of nontechnically trained problem sol-
vers. In short, the reusability potential of object
oriented programming remains limited to ex-
perts (Hurwitz, 1997).

However, the ability of nonspecialists to
make effective use of computers has grown in
other ways. As experts at research and develop-
ment laboratories were working on new
programming developments to solve large-scale
problems, they found the need to develop as-
sociated tools to facilitate their work. These as-
sociated tools provided support for: (a) the
ability to pass notes efficiently back and forth
(computer-facilitated communication); (b) the
ability to schedule meetings and circulate
notices and agendas quickly and efficiently
(computer-facilitated coordination); (c) the
ability to share and exchange working docu-
ments and artifacts (computer-facilitated col-
laboration), and (d) the ability to automatically
track and audit multiple versions of various ar-
tifacts (computer-facilitated control). In short,
the foundation was laid for what evolved into
integrated tool sets to support collaborative
work and eventually to support enterprise-level
activities.

Computer-Supported
Collaborative Work

Software engineers developed a range of com-
puter-supported systems to facilitate software
development processes. Such tools were created
to promote effective teamwork on complex and
large-scale efforts and have found use in other
settings where they are commonly referred to as
computer-supported collaborative work (CSCW;
Wilson, 1991). These new technologies allow for
creating environments and processes that sup-
port instructional design activities in a dis-
tributed setting as an essential part of refining the
routine.

The term computer-supported collaborative work
can be traced to 1984 (Grief, 1988). Computer
scientists used CSCW for an invited workshop
focused on the development of computer sys-
tems to support people in various work-related
activities (Bannon, 1991; Bannon & Schmidt,
1991). CSCW systems are generally created and

KNOWLEDGE MANAGEMENT TOOLS

customized to support multiple people working
at the same location or at different locations con-
nected by a network. The orientation in a CSCW
system is not on a particular task but rather on
the need for different persons, typically at dif-
ferent locations and possibly at different times,
to work together in creating various artifacts
aimed at solving some kind of problem
(Ganesan, Edmonds, & Spector, 2001;
Koschmann, 1996).

In short, the typical purpose of a CSCW sys-
tem is to provide an environment that supports
workplace collaboration and instantiates sup-
port for distributed cognition (Salomon, 1988,
1992, 1993). Early tools that evolved into key ele-
ments of a CSCW system include e-mail, com-
puter-based calendars, and electronic bulletin
boards (Wooley, 1994). These tools led to the
development of integrated platforms for CSCW
applications (e.g., Lotus Notes, Xerox Docu-
Share, Seven Mountains Integrate/Aspire, etc.)
that include more elaborate forms of support,
such as:

® Dynamic support for groups and subgroups;
e Variable and adaptable interfaces;

e Synchronized control of artifacts and com-
munications;

@ Communication and coordination among
groups and subgroups;

® Shared and shareable information spaces,
and

e Support for increasingly diverse types of ar-
tifacts.

As CSCW systems found additional uses in a
wider variety of settings, some researchers
(notably those arguing for a more constructivist
perspective) began to explore the efficacy of col-
laboration in various problem-solving and
learning settings (Jonassen, Hernandez-Serrano,
& Choi, 2000; Scott, Cole, & Engel, 1992). One
complex task in the domain of systems
dynamics is model building. An early example
of online group support for complex tasks is
group model building (Vennix, 1996). In sys-
tems dynamics, then, tools and techniques were
developed to foster the process of group-model
building (Morecroft & Sterman, 1994,
Richardson & Andersen, 1995; Vennix, 1996).
Model building tools and techniques support

39

group decision making, small-group com-
munication, and project management. The
group model-building process and techniques
may also inform instructional planning and
analysis, another complex task or collection of
tasks, and activities (van Merriénboer, 1997). An
added advantage of collaborative group work is
that participation in group planning processes is
easily extended to support user-centered and
participatory design.

In summary, CSCW systems are not typically
aimed at support for a particular task or activity.
Rather, they are developed to support group
work on complex activities (Dillenbourg, Baker,
Blaye, & O’Malley, 1996; Koschmann, 1996). The
central purpose is to facilitate group work. Such
systems are clearly appropriate for instructional
design and development. Indeed, many instruc-
tional design projects and efforts now use such
tools, including the ADAPTT Project (de
Croock, Paas, Schlanbusch, & van Merriénboer,
this issue; Spector, Eseryel, & Schuver-van
Blanken, 2001). Such systems do not directly ad-
dress object orientation and reusability, two of
the key notions in the evolution of programming
languages, which are briefly reviewed prior to
the discussion of KMS.

Object Orientation

Object orientation is derived from the evolution
of programming languages. Basically, the notion
is that rather than think in terms of data struc-
tures and machine operations, programmers
should be encouraged to think in terms of things
that have direct and obvious parallels in the real
world to be supported by computer applica-
tions. Approaching problems this way should in
principle promote flexible, generalizable, and
reusable solutions to recurring problems. The
real world does not come packaged as a collec-
tion of mathematical functions and data types.
Rather, the real world consists of things—ob-
jects—which are acted on by other things and
react in various ways. Similar things tend to be-
have in similar ways (a hint at reusability). A
designer can create new things by indicating the
kind of thing to be created, which brings
together a family of features or collection of

40

predefined characteristics (including behaviors
or methods). These inherited characteristics can
of course be modified.

An example of a reusable object from com-
puting is a checkbox. Software engineers often
have a requirement for an interface to display a
choice, record the user’s decision, and then
report that decision to the control system so that
appropriate action can occur. This is a recurring
requirement and the code is highly reusable.
Rather than program a checkbox each time the
requirement occurs, the software engineer can
obtain a precoded object from a library of objects
and simply indicate the details pertinent to this
instance (e.g., which decisions are allowable,
where to branch for each decision, etc.).

Similarly, instructional designers encounter
recurring requirements that can be served by the
use of resusable learning objects (Wiley, 2001).
An example of a reusable learning object is an
object that “teaches” a simple concept at an in-
troductory level. This is a requirement that in-
structional designers frequently encounter and
there is a well established pedagogy to support
such teaching: present a definition, an example,
a nonexample, and an opportunity to practice,
and test the application of the concept with
novel examples and nonexamples (Merrill,
1993).

Object orientation puts ontology first and fits
extremely well with one well-established instruc-
tional design ontology, namely Merrill’s (1993)
Second Generation Instructional Design—ID?.
Merrill’s world consists of objects (abstract and
concrete entities), activities (things people do),
and processes (things that occur in various ob-
jects and situations apart from human activities).
Instructional development systems built with an
explicit ontology such as Merrill’s ID? represent
an application of object orientation in the
domain of instructional design (Spector, 1999).
That such an approach can enhance produc-
tivity and instructional quality within a
development team has been demonstrated and
argued strongly by Merrill (1993). Whether such
object orientation results in reusability outside
the development team or enterprise is a different
matter because such reuse would require know-
ing details about such knowledge objects and
having ready and flexible access to them.

ETR&D, Vol. 50, No. 4

A second kind of object orientation is becom-
ing prominent, namely Web-based knowledge
objects for instructional purposes (Merrill, 1998;
Wiley, 2001). Such use is primarily based on a
derivative of standard generalized markup lan-
guage (SGML)—the predecessor to hyptertext
markup language (HTML). This relatively
recent effort is called the extensible markup lan-
guage (XML; see http://www.w3.0rg/TR/-
xhtml1/ for additional details). Basically, XML
regains much of the flexibility and power of
SGML while maintaining the familiarity of
HTML for users. In XML, it is relatively easy to
introduce new elements or additional element
attributes making the language extensible.
When XML is combined with the notion of
metadata-defined learning objects, the potential
for distributed reuse of knowledge objects for in-
structional uses becomes real. SCORM (share-
able content object reference module) represents
just that reusability technology for distributed
learning environments (see http://www.ad-
Inet.org/Scorm/scorm_index.cfmfor additional
information).

Reusability

In order to realize the potential of reusability,
there are two essential aspects: (a) Technologies
such as XML and SCORM represent only one of
these essential aspects—the enabling underlying
technology aspect; and (b) the human use of
such enabling technologies is the second aspect.
An organization can conceivably devote consid-
erable resources to developing a repository of
objects with appropriate metadata tags to indi-
cate the type of learning object involved. How-
ever, such resources will go largely unused
unless instructional designers and developers
are properly trained. Moreover, unless and until
such resources are shared across enterprises and
among institutions, the potential of reusable
learning objects and instructional metatagging
will not be realized. As suggested earlier, failure
to follow through on the human use side of such
technologies can result in suboptimal outcomes
(Brooks, 1995). In an important sense, reusability
is not fundamentally about metadata or object
orientation. Rather, it is a human use issue that

KNOWLEDGE MANAGEMENT TOOLS

41

Figure 1 [] Evolution of knowledge management systems (KMS).

Systems

Technology Sophistication

Database
Systems

Information

Knowledge
Management
Systems

Type and Number of Potential Tasks/Users

sinks or floats on perceptions, proper pretrain-
ing, ongoing support, incentives for collabora-
tion and sharing, and so on. The institutional
support climate for collaboration and per-
sonalities are crucial for systematic success with
regard to reuse.

KNOWLEDGE MANAGEMENT SYSTEMS

KMSs have evolved from earlier database and
information management systems (see Figure 1).
Modern problem- and object-oriented program-
ming languages evolved from earlier machine-
oriented languages. Modern KMSs support
multiple users performing a variety of tasks in a
flexible and dynamic manner, and have evolved
from earlier user- or task-oriented systems.
Databases were a relatively early development
in the enterprise use of computers. Early
databases were simple collections of records
composed of specific fields that could support
specific users performing specific tasks (e.g., a

person searching a database to see how many of
a certain item are available). Databases became
widely used to support a variety of users with
differing requirements. Subsets and supersets of
existing databases were created as new users
and uses were found. Soon databases were
being created that contained redundant data. In
some cases only one set of data was maintained.

This led to advances in database technology
that included both relational and object-oriented
databases aimed at promoting reuse of informa-
tion and minimizing redundant and unreliable
data in various information repositories. Other
features were then integrated into databases
(e.g., exporting records to a word processor,
creating differing access privileges for different
users, linking databases to spreadsheets and
other enterprise documents, managing projects
using information from databases, etc.). These
systems with their added functionality beyond
simple database management (e.g., add, modify,
delete, search, browse) became known as infor-
mation management systems.

42

Information management systems, then,
have evolved into KMSs as still more features
have been added and integrated. Critical fea-
tures of a KMS include explicit support for:

1. Communication (e.g., e-mail, bulletin boards,
group messaging);

2. Coordination (e.g.,
groups tasking, etc.);

3. Collaboration (e.g., shareable
shared work spaces, etc.); and

shareable calendars,

artifacts,

4. Control (e.g., version and configuration con-
trol, audit trails, document locking, etc.).

All of these capabilities support groups
working on complex tasks (Kling, 1991; Malone
& Crowston, 1993). As already argued, instruc-
tional design represents a collection of complex
tasks and activities typically accomplished by
multiple individuals working on different
aspects at different times and perhaps in dif-
ferent locations. In short, the potential for KMSs
to impact the work of instructional design
groups is quite significant. That KMSs are al-
ready being used and have an effect on instruc-
tional development groups is a reality (Ganesan
etal., 2001). The next section illustrates one such
case.

AN EXAMPLE OF KNOWLEDGE
MANAGEMENT IN INSTRUCTIONAL
DESIGN

Managing large volumes of information and
knowledge assets is central to large instructional
design or development efforts and is generally
well supported by a KMS. Several KMSs are
being used to support the collaborative design of
instruction, including Lotus Notes (an out-
growth of the early PLATO system), Xerox
Corporation’s DocuShare & Flowport and
SevenMountains’s 7M Enterprise (Integrate &
Aspire) (Ganesan et al., 2001). The example
elaborated here involves DocuShare-Flowport.

DocuShare is a Web-based document man-
agement system that is well suited to collabora-
tive group work. DocuShare requires users to
have access to and basic familiarity with the In-
ternet. It is a powerful but simple tool that al-
lows the sharing of documents via the Internet.

ETR&D, Vol. 50, No. 4

A user can add, post, change, search for, and
retrieve information in a secure, controlled en-
vironment. Users can exchange documents and
multimedia files—any format distributable and
accessible via the Web—without requiring users
to have any special knowledge or expertise with
regard to HTML and other underlying tech-
nologies. There are four ways to put documents
into DocuShare collections: (a) through a Web
browser by clicking Abb FILE; (b) by dragging
and dropping files to a networked folder on the
user’s desktop; (c) from within a word processor
or other software integrated into DocuShare by
choosing save and indicating a DocuShare col-
lection; and, (d) by scanning documents directly
to DocuShare collections using a networked
scanner and additional software called Flow-
Port.

In addition to explicit and strong support for
collaborative group work, DocuShare provides
support for the other critical aspects of a KMS, as
indicated in Table 1.

Table 1 [] Docushare support for KMS.

KMS Aspect Docushare Support

Communciation Bulletin boards for specific
collections, e-mail for
individuals and groups

Calendars for collections with
access for both individuals
and groups

Shareable documents with
locking features to insure
document integrity

Automatic versioning of
documents, ability to revert to
earlier versions, access control
by individual, group,
document, and collection

Coordination

Collaboration

Control

Design teams can use DocuShare to manage
all of the documents associated with an instruc-
tional design or development project. A collec-
tion (a directory or folder) is created for the
project; users are then given a username and
password along with access to appropriate col-
lections. A project can be divided into manage-
able pieces for various team members with

KNOWLEDGE MANAGEMENT TOOLS

43

Figure 2 [DocuShare support for collaborative course collections.

IDE 601 - Spring 204

Filas i ot rrodhia- o 1 Fplieranusa! Tarasoiogy

wenin e D0 AF

LLERE BT Ll o

Ueers com chieere files, foldars,
URLs, ssnouncements sd

s BLIGRD 10K B

- : i Ui of Tuckenbog "o colils, EETIVBE AT N feme gnd wEw
et o ey pliepey s deeri L Lk S SN W3 TRy L sy sy ibems in
- olends TIEN JWE Y S
s Bl vl Bl =t Lol AT j s
— P LT T
e L T
R s, TN e N)
e erssan A b
e, A 2T Y B
Al
Temasmon bs sy et wck; = sty mtvme e NP @
noigami, TUIVERD IHC N [F B
S L Howd om L = |

different roles and access privileges. Team mem-
bers can create bulletin boards, send messages,
and add documents to the various collections.
All of the documents and communications are
stored on a central server, relieving individual
members from worrying about backups and
other purely administrative tasks. When a team
member checks out a document, DocuShare
“locks” the original to prevent parallel changes
while another team member is adding or editing
material. When a document is checked back into
a collection, the lock is removed and other team
members can check out and modify the docu-
ment.

The training required to use DocuShare is
minimal—many users are able to make effective
use of DocuShare after a simple five-minute
starter session or with the assistance of a one-
page starter guide. The program does contain a
built-in tutorial as well as a variety of job aids,
along with short instructions and a longer user’s

PR R SRR

manual. DocuShare has been used to host both
online and hybrid courses, and is especially well
suited to support front-end planning and docu-
ment-sharing systems for groups of instructors
and designers working together on a variety of
courses (Ganesan et al., 2001).

Although not intended to be a Web course
management system, DocuShare has been used
at Syracuse University to host online courses.
There is no inherent support for threaded dis-
cussions, but the bulletin feature does support
asynchronous discussions. A separate chat pro-
gram was used to supplement the kinds of inter-
actions commonly supported in Web-based
courses.

At present, DocuShare is being used to sup-
port the design and development of online cour-
ses that are delivered using other Web course
management systems, such as BlackBoard and
WebCT. Since the courses change each semester
and are taught by different instructors, the docu-

44

ments used to support an online course are kept
in DocuShare. They can be and have been
codeveloped by teams of instructors with Docu-
Share maintaining version control, allowing the
documents to retain meaningful names and al-
lowing designers to revert to earlier versions at
any time. Syracuse University uses a variety of
Web delivery environments (primarily Black-
Board and WebCT), and some courses have
migrated from one environment to the other;
using DocuShare as the common document
repository has greatly facilitated this process.
BlackBoard allows a portion of a course to be
made publicly accessible while keeping the
remainder open only to registered students. This
feature is not currently supported in WebCT but
the same effect is easily achieved through the
guest account feature of DocuShare.

DocuShare is also being used to support
classroom-based courses and as a common
repository for course documents regardless of
the delivery environment. Overall, the use of
DocusShare to support the design, development,
and delivery of courses has been positive. Usage
has grown somewhat slowly, as would be ex-
pected for a new technology. The potential to
improve course development and help maintain
course consistency and quality is immediately
obvious to those who have adopted the system
in one form or another. The number of people
using DocuShare for educational support in the
School of Education has jumped from 2 to al-
most 20 in less than a year; many more are ex-
pected to adopt DocuShare as an instructional
development tool as those who have used it
spread the word about its ease of use. The real
power of DocuShare as a collaborative design
and development environment is only now be-
coming obvious.

CONCLUSIONS

Technology certainly can and does change the
way we live and learn. It is also true that many
technologies have been oversold in terms of
promises of radically improved productivity
and fundamental or systemic reform of underly-
ing processes. Both of these general observations
are certainly true of educational technology and

ETR&D, Vol. 50, No. 4

likely to prove true of the integration of KMSs
into the way that instructional design teams
work.

Nevertheless, the potential to improve the
quality of instructional design or development
efforts by having ready and flexible access to ex-
isting documents and by involving team mem-
bers in sustainable collaborative efforts over
time and across projects is a reality to be taken
seriously about the potential for KMS in instruc-
tional design. Unlike the limitations likely to be
encountered in making use of metadata (XMS)
to make significant improvements in reusability,
KMS addresses a wider range of issues and is in-
herently a human-centered technology. The suc-
cess of efforts such as the case illustrated here,
the ADAPT'T case, and other ongoing efforts
suggests that KMS has a bright future in instruc-
tional design.

Whether or not a system such as DocuShare
is adopted as the underlying engine for col-
laboration is not the key issue. Lotus Notes is a
more widely used KMS with a larger installed
base in university settings. The same key fea-
tures (communication, coordination, collabora-
tion and control) can be found. Lotus Notes,
perhaps, has a longer learning curve, but it also
has the advantage of having an underlying
database engine (Lotus Domino). Seven-
Mountains 7M Enterprise is also easy to use and
intuitive (much like DocuShare) and has most of
the same key features, except for communica-
tion, which is not an inherent part of Enterprise
but is easily available through e-mail and other
commonly installed communications tools. The
success of reusability will depend on human use
issues, such as the existence of a system that
promotes human interaction with shared ar-
tifacts without increasing the complexity of the
work or adding to the cognitive load placed on
individuals. In short, the key to successful reuse
is not a particular tagging scheme or a particular
technology—the key to successful reuse is in get-
ting people with relevant interests, expertise and
motivation to collaborate in ways that obviously
extend and enhance what they might ac-
complish individually.

As instructional designers and developers
begin to use these KMSs, it will be worthwhile to
study interaction patterns and perceptions

KNOWLEDGE MANAGEMENT TOOLS

about the relative merits of collaborative work.
There are many small issues yet to be resolved,
such as how to facilitate alternative design or
development paths using the same underlying
set of documents and artifacts. KMS technology
should allow what-if analysis of alternative
designs and implementations with reversion to
earlier versions or to mixed versions. This kind
of hybrid instructional prototyping has never
been pursued, although it is a common design
methodology in other settings (e.g., airplane and
automobile design).

There are also large issues yet to be resolved,
such as which designs are likely to achieve
desired outcomes efficiently. By supporting the
development of multiple versions of a course
from a common document repository, re-
searchers will be able to develop greater con-
fidence in which input variables really account
for different outcomes. The use of knowledge
management tools in instructional design can
improve the quality of instruction and add to
what we know about the relationship between
the design of instruction and learning outcomes.
The future of KMS in instructional design ap-
pears bright. Ol

J. Michael Spector [spector@syr.edu], Development
Editor-Elect of ETR&D, is Professor and Chair,
Instructional Design, Development and Evaluation,
Syracuse University, 330 Huntington Hall, Syracuse,
NY 13244,

REFERENCES

Bannon, L.J. (1991). From human factors to human ac-
tors: The role of psychology and human-computer
interaction studies in system design. In J. Green-
baum & M. Kyng (Eds.), Design at work: Cooperative
design of computer systems (pp. 25-44). Hillsdale, NJ:
Lawrence Erlbaum Associates.

Bannon, L., & Schmidt, K. (1991). CSCW: Four charac-
ters in search of a context. In J. Bowers & S. Benford
(Eds.), Studies in computer supported cooperative work:
Theory, practice and design (pp. 3-16). Amsterdam,
The Netherlands: Elsevier North-Holland.

Brooks, F.P. (1995). The mythical man-month (20th ed.).
New York: Addison Wesley.

Dijkstra, S., Seel, N., Schott, F., & Tennyson, R.D.
(Eds.). (1997). Instructional design: International
perspectives. Mahwah, NJ: Lawrence Erlbaum As-
sociates.

45

Dillenbourg, P., Baker, M., Blaye, A., & O'Malley, C.
(1996). The evolution of research on collaborative
learning. In P. Reimann & H. Spada (Eds.), Learning
in humans and machines: Towards an interdisciplinary
learning science (pp. 189- 211). London: Pergamon
Press.

Ganesan, R., Edmonds, G.S., & Spector, J.M. (2001).
The changing nature of instructional design for net-
worked learning. In C. Jones & C. Steeples (Eds.),
Networked learning in higher education (pp. 93-109).
Berlin, Germany: Springer-Verlag.

Grief, I. (Ed.). (1988). Computer-supported cooperative
work: A book of readings. San Mateo, CA: Morgan
Kaufmann.

Hurwitz, J. (1997). Component-based development.
Database Management Systems (June, 1997), 10-12.
Jonassen, D.H., Hernandez-Serrano, J., & Choi, I.
(2000). Integrating constructivism and learning tech-
nologies. In J.M. Spector & T.M. Anderson (Eds.), In-
tegrated and holistic perspectives on learning, instruction
and technology: Understanding complexity (pp. 103-
128). Dordrecht, The Netherlands: Kluwer

Academic Publishers.

Kling, R., (1991). Cooperation, coordination and con-
trol in computer-supported work. Communications of
the ACM, 34(12), 83-88.

Koschmann , T. (1996). Paradigm shifts and instruc-
tional technology: An introduction. In T.
Koschmann (Ed.), CSCL: Theory and practice of an
emerging paradigm (pp. 1-23). Mahwah, NI
Lawrence Erlbaum Associates.

Malone, T., & Crowston, K. (1993). The interdiscipli-
nary study of coordination. Computing Surveys,
26(1), 87-119.

Merrill, M.D. (1993). An integrated model for automat-
ing instructional design and delivery. In J.M. Spec-
tor, M.C. Polson, & D.J. Muraida (Eds.), Automating
instructional design: Concepts and issues (pp. 157-190).
Englewood Cliffs, NJ: Educational Technology Pub-
lications.

Merrill, M.D. (1998). Knowledge objects. CBT Solutions
(March/April), 1-11.

Morecroft, D.W., & Sterman, J.D. (Eds.). (1994). Model-
ing for learning organizations. Portland, OR: Produc-
tivity Press.

Richardson, G.P., & Andersen, D.F. (1995). Teamwork
in group model-building. System Dynamics Review,
11(2), 113-137.

Salomon, G. (1988). Al in reverse: Computer tools that be-
come cognitive. Invited address at the American
Educational Research Association (AERA). March,
1988. New Orleans, LA.

Salomon, G. (1992). What does the design of effective
CSCL require and how do we study its effects? SIG-
CUE Outlook—Special Issue on CSCL, 21(3), 62-68.

Salomon, G. (1993) (Ed.). Distributed cognitions:
Psychological and educational considerations. New
York, NY: Cambridge University Press.

Scott, T., Cole, M., & Engel, M. (1992). Computers and
education: A cultural constructivist perspective.

46

Review of Research in Education, 18, 191-251.

Spector, J.M. (1994). Integrating instructional science,
learning theory, and technology. In R.D. Tennyson
(Ed.), Automating instructional design, development,
and delivery (pp. 243-259). Berlin, Germany:
Springer-Verlag.

Spector, J.M. (1995). Integrating and humanizing the
process of automating instructional design. In R.D.
Tennyson & A.E. Barron (Eds.), Automating instruc-
tional design: Computer-based development and delivery
tools (pp. 523-546). Berlin, Germany: Springer-Ver-
lag.

Spector, J.M. (1999). Intelligent support for instruction-
al development: Approaches and limits. In J. Akker,
N. Nieveen, & T. Plomp (Eds.), Design methodology
and developmental research in education and training
(pp. 279-290). Dordrecht, The Netherlands: Kluwer
Academic Publishers.

Spector, J.M., & Anderson, T.M. (Eds.). (2000). In-
tegrated and holistic perspectives on learning, instruction
and technology: Understanding complexity. Dordrecht,
The Netherlands: Kluwer Academic Publishers.

ETR&D, Vol. 50, No. 4

Spector, J.M., Eseryel, D., & Schuver-van Blanken, M.J.
(2001, June). Current practice in designing training for
complex skills: Implications for design and evaluation of
Adapt'T. Paper presentation at ED-Media 2001,
Tampere, Finland, June 2001.

Van Merriénboer, JJ.G. (1997). Training complex cogni-
tive skills: A four-component instructional design model
for technical training. Englewood Cliffs, NJ: Educa-
tional Technology Publications.

Vennix, J.LA.M. (1996). Group model building: Facilitating
team learning using system dynamics. Chichester, UK:
John Wiley & Sons.

Wiley, D. (2001). The instructional use of learning objects.
Bloomington, IN: The Association for Educational
Communications and Technology (AECT).

Wilson, P. (1991). Computer supported cooperative work:
An introduction. Oxford, Intellect Books.

Wooley, D.R. (1994, July). PLATO: The emergence of
on-line community. Computer-Mediated Communica-
tion Magazine, 1(3), 5.

