
ADAPTIT: Tools for
Training Design and Evaluation

Marcel B.M. de Croock
Fred Paas
Henrik Schlanbusch
Jeroen J.G. van Merriënboer

This article describes a set of computerized
tools that support the design and evaluation of
competency-based training programs. The
training of complex skills such as air traffic
control and process control requires a
competency-based approach that focuses on the
integration and coordination of constituent
skills and transfer of learning. At the heart of
the training are authentic whole-task practice
situations. The instructional design tools are
based on van Merriënboer’s 4C/ID*
methodology (1997). The article describes a
training design tool (Core) that supports the
analysis and design for competency-based
training programs and an evaluation tool
(Eval) that supports the subsequent revision of
this training design.

Traditional knowledge-based training can be
characterized as an approach in which the learn-
ing goals primarily describe what learners
should know at the end of training. Hence, in-
structional design primarily focuses on the iden-
tification, ordering and presentation of
information about a skill or learning domain. In
contrast, learning goals for competency-based
approaches describe what learners should be able
to do after training. Instructional design then
focuses on the identification of constituent skills
that make up the competency or complex skill
and on designing a training blueprint that helps
students learn to perform these skills in a coor-
dinated and integrated manner. Various studies
have provided evidence that competency-based
approaches to training design are more effective
in attaining transfer performance than
knowledge-based approaches (for an overview,
see van Merriënboer, Clark, & de Croock, 2002).

Van Merriënboer developed the four-com-
ponent instructional design model (4C/ID*
methodology, 1997) to support the development
of competency-based training programs. This
model provides methods and techniques for: (a)
analyzing a complex cognitive skill into its con-
stituent skills and their interrelationships; (b)
analyzing the different knowledge structures
that may be helpful or are required to be able to
perform the constituent skills; and (c) designing
a training blueprint with, as a base, a sequence
of whole task practice situations that support in-
tegration and coordination of the constituent
skills. The model is fully consistent with cogni-
tive load theory, because its instructional

 ETR&D, Vol. 50, No. 4, 2002, pp. 47–58 ISSN 1042–1629 47

AAH GRAPHICS, INC. / (540) 933-6210 / FAX 933-6523 / 11-26-2002 / 14:40

methods ensure that learners are continually
confronted with whole tasks that yield an ac-
ceptable cognitive load (van Merriënboer,
Kirschner & Kester, submitted; for a review, see
Sweller, van Merriënboer, & Paas, 1998). Its con-
sistency with cognitive load theory allows train-
ing designers to develop training programs that
take the limited processing capacity of the
human mind into account.

Applying the 4C/ID* methodology for the
design of competency-based training is not an
easy task. The amount of intermediate and final
products that are produced during analysis and
design is large and those products are highly in-
terrelated. As a result it is easy to lose the over-
view over the complete design process, which
may impair decision making. Therefore, in a
European-Community–funded project called
Advanced Design Approach for Personalized
Training—Interactive Tools (ADAPTIT), we are
currently developing a set of software tools that
will help designers apply the 4C/ID* methodol-
ogy. A first tool, Core, supports the analysis of a
complex skill and the design of a competency-
based training blueprint. A second accompany-
ing tool, Eval, supports the evaluation of the
training program and the subsequent revision of
the blueprint on which the training program is
based. Note that the actual development of the
training program as well as its implementation
is not supported by the ADAPTIT tools.

The forthcoming sections first describes what
a competency-based training blueprint designed
according to the 4C/ID* methodology looks
like. Next, the Core and Eval tools are discussed.
Finally, the discussion addresses the evaluation
of the tools and some directions for future re-
search.

THE 4C/ID* METHODOLOGY

A basic assumption of the 4C/ID* methodology
is that environments for complex learning can be
described in terms of four interrelated blueprint
components (van Merriënboer et al., 2002):

1. Learning tasks, which are the actual tasks the
learners will be working on during the train-
ing program. Learning tasks are organized in
a simple-to-complex sequence of task classes,

that is, categories of equivalent learning
tasks. Learning tasks within the same task
class start with high built-in learner support,
which disappears well before the end of the
task class (i.e., a process of “scaffolding”).

2. Supportive information, which is helpful to the
learning and performance of aspects of the
learning tasks that require variable perfor-
mance over problem situations. It explains
how a domain is organized and how to ap-
proach tasks or problems in this domain, and
provides cognitive feedback on the quality of
task performance.

3. Just-in-time information, which is information
that is prerequisite to the learning and perfor-
mance of aspects of learning tasks that show
invariant performance over problem situa-
tions. It provides algorithmic specifications of
how to perform those aspects.

4. Part-task practice, which provides additional
repetitive practice for selected constituent
skills that need to be performed at a very high
level of automaticity after the training. It is
only necessary if the learning tasks do not
provide enough repetition to reach the
desired level of automaticity.

The bottom part of Figure 1 shows a
schematic view of the four components. The
learning tasks are represented as circles (num-
bered 3), organized in task classes (the dotted
boxes around a set of learning tasks), and show-
ing a decrease of support within task classes (in-
dicated by the dark filling of the circles). The
supportive information is represented in the L-
shaped, light gray figures that are connected to
the task classes (numbered 6) and may also con-
tain cognitive feedback (CFB). The just-in-time
information is represented in the dark gray rec-
tangles, with upward arrows that indicate that
units of just-in-time information are connected
to separate learning tasks (numbered 9). Finally,
part-task practice is represented by sequences of
small circles (i.e., practice items; numbered 10).

The 4C/ID* methodology can be described as
an organized set of 10 activities that may help to
create a detailed training blueprint. Four ac-
tivities pertain to the design of the blueprint
components described above: the design of learn-
ing tasks (3), supportive information (6), just-in-

AAH GRAPHICS, INC. / (540) 933-6210 / FAX 933-6523 / 11-26-2002 / 14:40

48 ETR&D, Vol. 50, No. 4

time information (9), and part-task practice (10).
The other 6 activities are preparatory and
analytical in nature. They provide the input
necessary for the design activities. The first ac-
tivity, decompose the complex skill (1), is concerned
with identifying the constituent skills and their
interrelationships. The result is a so-called inter-
twined skills hierarchy. The goal of the second
activity, sequence task classes (2), is to make a first
rough training design, by specifying a simple-to-
complex sequence of categories of learning tasks
characterizing authentic problem situations.
These first 2 activities form the basis for the
design of learning tasks, which completes the
skeleton of the training blueprint.

The remaining activities flesh out this
skeleton. The activities analyze mental models (4)
and analyze cognitive strategies (5) are concerned
with the identification and description of
knowledge structures that may be helpful to
perform the so-called nonrecurrent constituent
skills, that is, the skills that require variable per-
formance over problem situations. The activities
analyze rules and procedures (7) and analyze prereq-
uisite knowledge (8) result in the identification
and description of the knowledge that must be

presented to the learners because it enables the
performance of so-called recurrent skills, that is,
the skills that show identical performance over
problem situations. The next section will discuss
Core and illustrate how the first three activities
are supported by this tool.

CORE

The goal of Core is to support designers with
analyzing complex skills and designing com-
petency-based training blueprints according to
the 4C/ID* methodology. Available ID
methodologies and tools are often criticized for
the fact that they are not compatible with the
way designers perform their job (Rowland,
1992). Therefore, Core allows instructional
designers to perform their tasks as they prefer
(Goel & Pirolli, 1991; Perez, Johnson, & Emery,
1995). For instance, Core supports “zigzag”
design, which includes a top-down approach
(starting with task analysis); a bottom-up ap-
proach (starting with the design of learning
tasks); or any alternative approach, such as start-
ing from the middle by first making a sequence

Figure 1 The ten main activities of the 4C/ID* methodology (see text).

AAH GRAPHICS, INC. / (540) 933-6210 / FAX 933-6523 / 11-26-2002 / 14:40

TOOLS FOR INSTRUCTIONAL DESIGN 49

of task classes. Furthermore, Core allows other
systemic forms of nonlinear, cyclical and itera-
tive design, giving designers optimal freedom in
their approach.

Other functions that Core offers pertain to the
management of all the complete or intermediate
products that are constructed during the
analysis and design process (e.g., skills hierar-
chy, task class descriptions, learning tasks, etc.).
First, Core provides functions for entering, edit-
ing, storing, maintaining and reusing analysis
and design products. This is achieved primarily
by providing templates for easily entering infor-
mation, ensuring that products are created in a
way that is consistent with the 4C/ID*
methodology. Second, Core provides functions
for examining the products from multiple
perspectives. The designer can filter out un-
desired information, specify different textual
and graphical views on products (e.g., zoom in
on supportive information for a selected task
class, list just-in-time information for all learning
tasks, examine differences between task classes,
etc.), and use printing-on-demand functions to
export the blueprint in any desired format.
Third, Core provides functions to check whether
the analysis and design products are complete,
internally consistent, and in line with the
4C/ID* methodology. Finally, wherever pos-
sible Core provides utilities to automate analysis
and design activities.

The next section describes the main interface
of Core. Then, a scenario is presented of a desig-
ner who uses Core to perform the first three ac-
tivities of the 4C/ID* methodology. Finally, the
functions that support the seven remaining ac-
tivities are briefly discussed.

Core Main Architecture

Figure 2 shows an overview of Core’s main in-
terface. The screen is divided into four different
regions. In the upper left corner there is the
project browser, which is used to display all ele-
ments of the training project in a hierarchical
way. In addition, the project browser gives the
designer access to other training projects and, if
applicable, to other files with relevant informa-
tion that can be imported into a 4C/ID* project.

To the right of the project browser, in the upper
right corner, the diagram browser is located. This
browser provides access to three diagram
editors, which allow for the manipulation of the
same elements as in the project browser. How-
ever, the elements are now represented in a
more intuitive graphical format. The following
three diagram editors are available: (a) the skills
hierarchy diagram editor, (b) the knowledge
model diagram or KMD-editor, and (c) the
blueprint diagram editor. At the bottom right,
the detailed editors are located. These editors are
used to specify information for the different
types of elements (e.g., particular constituent
skills in the skills hierarchy diagram, particular
learning tasks in the blueprint diagram, etc.) that
can be selected in the diagram editors. In the bot-
tom left corner, the draft editor is located. It can
be used for the quick naming and description of
elements in the training project and for display-
ing aggregate information about the diagram
that is displayed in the current diagram editor.

Both the project browser and the diagram
browser have functions that allow a designer to
filter out undesired information and display
only the products that are needed at a particular
moment. Interaction between the different parts
of the tool is fully visual, meaning that linking,
adding, and rearranging elements is simply
done by “drag and drop.” Navigation is data
driven, meaning that the system always
presents the editors and details for the currently
selected element. By right-clicking an element,
the system will present the user all commands
that are available for that element. Because Core
also is a client-server application, a designer can
log on to a server from everywhere, as long as
Internet access is available. This function enables
a design team with members at different loca-
tions to collaboratively work on a training
design project. Finally, Core is implemented in
the Java programming language and, as much
as possible, based on open standards such as
shareable content object reference module
(SCORM) and extensible markup language
(XML). This allows for the exchange of design
products with other applications that also ad-
here to those standards.

AAH GRAPHICS, INC. / (540) 933-6210 / FAX 933-6523 / 11-26-2002 / 14:40

50 ETR&D, Vol. 50, No. 4

Design Scenario

Below, a scenario is presented of a designer who
uses Core to perform the first three activities of
the 4C/ID* methodology, that is, (a) the decom-
position of a complex skill, (b) the sequencing of
task classes, and (c) the design of learning tasks.
This scenario illustrates the functions of Core
that were discussed above. While the activities
are discussed in the specified order, it should be
noted that a designer is actually free to start with
any activity he or she prefers.

Using Core to decompose the complex skill T h e
main purpose of this activity is to create a skills
hierarchy that displays all constituent skills that
make up whole-task performance and interre-
lates these skills to each other. Figure 2 shows a
part of the skills hierarchy for the complex skill,
“searching for literature” (for a complete
description see van Merriënboer et al., 2002).

The skills hierarchy diagram editor supports the
designer, who is building a skills hierarchy.
Skills can be added, removed, and rearranged in
the hierarchy by means of drag and drop, after
which the hierarchy is automatically refor-
matted. Additional relations can be drawn be-
tween skills at the same level to indicate the
order in which they are performed: temporal
relations for skills that have to be performed in a
particular order; simultaneous relations for
skills whose performance is highly interrelated
or concurrent, and transposable relations for
skills that can be performed in an arbitrary
order. The user can zoom in on the skills hierar-
chy diagram to see more details, or zoom out to
get a global overview.

Another purpose of the decomposition of the
complex skill is to describe performance objec-
tives for each constituent skill and to classify
them on a number of dimensions. A detailed
editor, the skills editor, is used to describe the

Figure 2 Prototype of the Core tool showing the skills hierarchy diagram.

AAH GRAPHICS, INC. / (540) 933-6210 / FAX 933-6523 / 11-26-2002 / 14:40

TOOLS FOR INSTRUCTIONAL DESIGN 51

performance objectives. The different aspects of
a performance objective, such as the starting
situation, conditions under which the task must
be performed, desired results, and standards for
acceptable performance are described by click-
ing on the tab labeled “performance objectives”
and then filling out the associated forms. The
tabs of the skills editor always show the forms
for the currently selected skill in the skills hierar-
chy diagram editor. All products that result
from 4C/ID* activities and that are logically
linked to a particular skill are also labeled in the
skills editor. For instance, the tab “SAPs” con-
tains a form that allows the user to list sys-
tematic approaches to problem solving that
were identified during the observation of an ex-
pert; these SAPs may be further analyzed with
the KMD-editor as part of the main activity,
“analyze cognitive strategies.” Classifying skills
is done by clicking on the properties tab in the
skills editor and then filling out the associated
form. In the skills hierarchy diagram editor,
properties such as whether a skill is recurrent or
nonrecurrent can be directly visualized in the
elements that represent skills. For example, in
Figure 2 round dots in the elements indicate that
a skill is nonrecurrent; squares indicate that a
skill is recurrent. By applying filters, the desired
information only can be selected for display. Fil-
ters are set in the Preferences menu.

Core can check if prescriptions from the
4C/ID* methodology are consistently applied.
An example of this feature can be seen when
skills are marked as recurrent or nonrecurrent. If
a skill is marked as nonrecurrent, the 4C/ID*
methodology specifies that all parent skills are
nonrecurrent as well. The user can choose to
have the system either automatically apply this
principle by updating the hierarchy whenever a
classification of a skill is changed, or to graphi-
cally indicate where in the hierarchy inconsis-
tencies with this principle appear. Consistency
checking for this principle, as well as for many
other principles of the 4C/ID* methodology, can
be enabled or disabled at the user’s convenience.

Using Core to sequence task classes. The main
purpose of this activity is to design a global out-
line of the training program by describing a
simple-to-complex sequence of task classes, that

is, categories of meaningful, whole-task practice
situations that will confront the learners during
the training. These task classes form the basis for
the next main activity, the design of learning
tasks, in which the designer describes a number
of equivalent tasks for each task class (i.e., learn-
ing tasks of roughly equal difficulty that can be
performed on the basis of the same body of
knowledge). The 4C/ID* methodology
describes several approaches that can be used to
sequence task classes, such as emphasis
manipulation, progressive mental models, and
simplifying assumptions. Here, it will be
demonstrated only how Core supports task-
class sequencing according to the simplifying as-
sumptions approach.

The basic idea behind the simplifying as-
sumptions approach is that all conditions that
might simplify or complicate performance of—
parts of—the whole skill are identified. Training
then starts with a task class that contains the
simplest but authentic tasks that a professional
might encounter in the real world. In
subsequent task classes, the simplifying as-
sumptions are relaxed, so that the situations that
the training is based on become more and more
complex. To apply the simplifying assumptions
approach, the designer first has to identify and
specify so-called complexity factors. A complexity
factor is a variable, with values assigned that in-
dicate different levels of complexity for perform-
ing the skill. A user can create a new complexity
factor in the skills hierarchy diagram by right-
clicking on the highest-level constituent skill to
which the complexity factor applies, and then
choosing the appropriate command from the
pop-up menu. In a detailed editor, the task-class
editor, the user can then specify the different
values for the newly created complexity factor.

After the complexity factors have been iden-
tified the user can start to create task classes. Fig-
ure 3 shows the blueprint diagram with a
sequence of three task classes and the associated
task-class editor. The designer can add, edit, and
delete task classes in the blueprint diagram. The
system shows a list of all complexity factors for
each task class. In the task-class editor, the desig-
ner can set values for each factor to specify the
level of complexity for each task class. If the
designer fails to set a value for a complexity fac-

AAH GRAPHICS, INC. / (540) 933-6210 / FAX 933-6523 / 11-26-2002 / 14:40

52 ETR&D, Vol. 50, No. 4

tor, the system gives a warning indicating that
the design of that particular task class is incom-
plete. After all values have been assigned, the
tool can automatically conduct a consistency
check. If the values for the complexity factors for
the different task classes are not set in such a
way that each following task class is of a higher
complexity than the previous one, the system
gives a warning to the user.

Core also offers functions to automatically
create a task-class sequence based on the com-
plexity factors specified by the user. If this func-
tion is used, the designer must enter a rank
order for the complexity factors, the desired
number of task classes and, optionally, the
desired complexity factor values for one or more
of the task classes in the sequence. The system
then provides suggested complexity factor
values for undefined task classes, while ensur-
ing a smooth increase of complexity for the

whole sequence, because the number of com-
binations of complexity factor values is equal-
ized for each task class.

Using Core to design learning tasks. When a se-
quence of task classes has been created, learning
tasks are designed for each task class. Or, vice
versa, the designer may first design learning
tasks and then create task classes to which those
learning tasks can be assigned. According to the
4C/ID* methodology, learners receive much
guidance for the first learning tasks within each
task class, but guidance and support is gradual-
ly decreased to zero well before the end of the
task class is reached. The next task class starts
with a high level of guidance and support again,
yielding a saw-tooth pattern for the level of sup-
port throughout the whole training program. In
a detailed editor, the learning-task editor, Core
provides a set of templates for different types of

Figure 3 Prototype of the Core tool showing the blueprint diagram, with a sequence of task
classes.

AAH GRAPHICS, INC. / (540) 933-6210 / FAX 933-6523 / 11-26-2002 / 14:40

TOOLS FOR INSTRUCTIONAL DESIGN 53

learning tasks that can be used to design a
smooth decrease of built-in learner support.
Currently supported learning tasks are case
studies, modeling examples, completion tasks,
goal-free tasks, reverse tasks, imitation tasks and
conventional tasks (see van Merriënboer et al.,
2002, for a full description).

The bottom right part of Figure 4 shows the
learning-task editor with a partly filled-out
template for a completion task (i.e., a task for
which the learner must complete a partially
given solution). All templates consist of a prob-
lem description and an assignment for the
learner. The problem descriptions follow the
general problem solving model of Newell and
Simon (1972) and contain the elements: given
state, criteria for an acceptable goal state, and a
solution for bridging the gap between the given
state and the desired goal state. In addition, a
description may be given of the problem-solving
process leading to an effective solution. A desig-
ner creates a learning task with a certain amount
of learner support by first selecting a template
for a particular type of learning task and then
specifying the necessary elements. The tem-
plates already contain the relevant assignment
for the learner; for instance, to complete the
given solution (for a completion task), to
describe a situation for which the given solution
is effective (for a reverse task), or to come up
with a new solution (for a conventional task).
The user is prompted by the system to complete
or omit parts of the problem elements in the
template in a way that is consistent with the
chosen learning task format (see van
Merriënboer, 1997, for a complete discussion).

The top right part of Figure 4 shows an ex-
ample of a blueprint diagram after a series of
learning tasks has been created. Core graphical-
ly indicates the amount of learner support and
guidance for a particular learning task by com-
pletely or partly filling up the learning-task ele-
ment. For instance, a case study is assumed to
provide highest support and is thus completely
filled up. The amount of learner support for a
particular type of learning task that is preset in
the system is only a rough indication; the true
amount depends on the way templates are filled
out. Therefore, the designer can adjust the indi-
cated level of learner support for each learning

task. Obviously, there is also the possibility of
creating additional templates for new types of
learning tasks and to add those to the system.

Using Core for Remaining Activities

For the remaining design activities, that is, the
design of supportive information (6), the design
of just-in-time information (9), and the design of
part-task practice (10), Core offers similar func-
tions as described in the previous section. The
user can add additional building blocks to the
blueprint diagram by drag and drop. By select-
ing these elements in the blueprint diagram, as-
sociated detailed editors become available that
provide templates in which the details for the
different building blocks can be entered.
Wherever possible, functions for automated
design and for consistency checking are made
available.

For the remaining analysis activities, that is,
the analysis of mental models (4), cognitive
strategies (5), rules and procedures (7), and pre-
requisite knowledge (8), a KMD-editor (see the
sector on Core’s main architecture) is available.
The purpose of the analysis activities is to
describe the knowledge that is helpful or re-
quired for the performance of the different con-
stituent skills in the skills hierarchy. The
KMD-editor allows for the creation of KMDs,
and for listing and graphically representing
knowledge analysis products. The editor
provides templates for representing different
types of knowledge models. For mental models
and prerequisite knowledge (products of, in
order, activities 5 and 8), concept maps and
semantic networks are used. For strategic
knowledge (product of activity 4), flow-charts or
SAP-charts that indicate a systematic approach
in terms of problem-solving phases, and
guidelines that may be helpful to complete each
of the phases, are used. Finally, for rules and
procedures (product of activity 7) a formalism is
used in which goals are specified, together with
methods to reach those goals, operators that
make up the methods, and selection rules to
select the best method under given circumstan-
ces. To conclude, Core stores all nonordinary
verbs, adjectives, and nouns that are entered by

AAH GRAPHICS, INC. / (540) 933-6210 / FAX 933-6523 / 11-26-2002 / 14:40

54 ETR&D, Vol. 50, No. 4

the designer in a concept repository that is made
available in the KMD-editor. This allows a desig-
ner to manage easily all concepts in a learning
domain and to build a glossary of relevant terms.

EVAL

Eval is an ID tool that supports the evaluation of
an ADAPTIT training blueprint on the basis of
dedicated test data that are gathered during the
actual use of developed training materials. Eval
supports the first three levels of Kirkpatrick’s
(1994) well-known evaluation model: (a)
trainees’ reaction to the training program, (b) the
measure to which training objectives are
reached, and (c) the effects on on-the-job perfor-
mance. The fourth level, business results, is not
supported. Eval helps designers gather relevant
data and analyze them in order to assess and, if
necessary, improve the effectiveness of the train-
ing blueprint.

Data Gathering

For the first level of evaluation, reaction, Eval
produces online, web-based questionnaires for
gathering subjective data about the training pro-
gram. Both trainers and trainees fill out the
questionnaires. They are tailored to the training
blueprint under evaluation and query for infor-
mation about highly specific parts of the
blueprint. Because the questionnaires are
presented online, the data can be directly stored
in a database. For the second level, training ob-
jectives, Eval provides online forms that are
filled out by the responsible trainers or instruc-
tors. The forms gather objective performance
data (e.g., accuracy, speed, etc.) and also offer
the opportunity to enter, for each trainee, cogni-
tive load data for each learning task and each
practice item. Again, the forms are based on the
training blueprint under evaluation, so that for
each learning task and practice item only the
relevant information is gathered. For the third
level, on-the-job performance, Eval generates

Figure 4 Prototype of the Core tool showing the blueprint diagram, with sequences of
learning tasks for each task class with diminishing support.

AAH GRAPHICS, INC. / (540) 933-6210 / FAX 933-6523 / 11-26-2002 / 14:40

TOOLS FOR INSTRUCTIONAL DESIGN 55

questionnaires and observation schemes based
on the analysis of the complex cognitive skill,
and focusing on the completeness and correct-
ness of the skills hierarchy. These data are used
to assess the suitability of the performance objec-
tives (including standards for acceptable perfor-
mance) and the relevancy of the knowledge
analyzed for each constituent skill.

Data Analyses

In addition to gathering evaluation data, Eval
also can be used to analyze data and provide in-
formation to improve the training blueprint. The
reaction data are analyzed in order to detect
parts of the training blueprint that trainees had
difficulties with, found unclear, or pointed out
as not motivating. Eval provides overviews of
all the learning tasks, task classes, practice items,
and other blueprint elements that show relative-
ly high or low scores on the aforementioned
measures. The designer can use this information
either to reauthor some of the training materials
or to change fundamentally the training pro-
gram by redesigning the training blueprint and,
only then, reauthor the materials.

The data regarding the training objectives
provide more objective information about the ef-
fectiveness of the training program. Eval can
quantitatively analyze these data and show
learning curves for performance and cognitive
load. As explained before, task classes represent
more or less complex versions of the whole com-
plex skill and are designed to optimize cognitive
load. The learning curves are therefore a direct
indication of whether or not the training
blueprint succeeded in optimizing cognitive
load so that trainees could efficiently acquire the
whole complex skill. The designer can use this
information to alter the training design in the
following ways: (a) add learning tasks to a task
class, because the trainees did not master the
task class version of the whole complex skill
after completing all the learning tasks within the
task class; (b) split up particular task classes be-
cause the increase in complexity was too large; (c)
combine particular task classes, because some of
them were too easy, or (d) increase, diminish, or
alter the timing of part-task practice.

Whereas the data about training objectives
provide information about the effectiveness and
efficiency of the training blueprint for reaching
the training goals, the on-the-job performance
data indicate if the training design was really ef-
fective in reaching transfer of learning from the
training context to the on-the-job situation. The
analysis and use of this on-the-job performance
data is of a qualitative nature and, as such, not
further supported by Eval.

DISCUSSION

This article described tools to support instruc-
tional design and evaluation for competency-
based training programs. The tools take the
4C/ID* methodology as a starting point. First,
the 4 blueprint components of this methodol-
ogy, learning tasks, supportive information,
just-in-time information, and part-task practice
were briefly described. Second, the 10 activities
that make up the methodology were discussed.
Core provides support for each of those 10 ac-
tivities. Eval feeds dedicated evaluation data
back to Core in order to improve and optimize a
training blueprint. Together, Core and Eval sup-
port the creation of an effective training
blueprint by focusing primarily on easing the in-
formation management and decision making
aspects of applying the 4C/ID* methodology.

ID tools that show some resemblance with
Core have been described in recent review ar-
ticles by Nieveen and Gustafson (1999) and
Wang (2001). They include Advanced Instruc-
tional Design Advisor (AIDA, later Guided
AIDA or GAIDA), Designer’s Edge, Langevin
Instructional DesignWare, Electronic Trainer,
GUIDE and GOLDIE. There are several impor-
tant differences with our system. First, other sys-
tems tend to be very broad, in the sense that they
mainly provide library and information support
with regard to the general ADDIE model
(analysis, design, development or production,
implementation and evaluation), or they focus
on conceptual or procedural domains. None of
the systems is directed toward the design of
whole-task practice and, in our opinion, suitable
for the design of training for complex skills.
Second, they only allow for a superficial analysis

AAH GRAPHICS, INC. / (540) 933-6210 / FAX 933-6523 / 11-26-2002 / 14:40

56 ETR&D, Vol. 50, No. 4

of tasks and knowledge, while Core provides a
full-fledged tool (the KMD-editor) for cognitive-
task analysis, yielding results that are directly
propagated to the related design activities.
Finally, we are not aware of any other systems
that can use dedicated evaluation data to im-
prove and tune their training blueprint.

The ID tools are currently developed within
the ADAPTIT project. Core is available as an
early prototype and is currently tested with
users (in this project, all users are in the aviation
industry and air traffic control). The develop-
ment of the Eval tool is on its way, but a com-
plete prototype will not become available before
Core is completely tested and finished. The tools
are being developed following a participatory
design approach (Blomberg & Henderson,
1990). In this approach social and organizational
requirements for the tools are taken into account
by collaborating with the intended users
throughout the design and development
process. During the development process,
prototypes of the tools are continuously tested
for functionality and usability. The following
usability aspects are taken into account: (a) lear-
nability, indicating that the user interface of the
tool can be learned in a short time; (b)
memorability, indicating that the user interface
does not need relearning if it has not been used
for some time; (c) efficiency, meaning that users
can quickly accomplish their goals; (d) error
minimization, indicating that the user interface
prevents and minimizes errors and mistakes,
and (e) satisfaction, indicating that users feel
comfortable while using the system.

As a next step in the project, a third ID tool,
called Task-i, will be developed. This tool will be
used during the training process and support
the personalized delivery of a competency-
based training program. It gathers information
on learner performance and learner progress
(speed, accuracy, cognitive load, etc.) and uses
this information to select the best subsequent
learning task for this particular learner. All the
data of each trainee that are entered into Task-i
are also stored in a log file that can be imported
into Eval for further analysis. In a final phase of
the project, the effectiveness, usability, and ef-
ficiency of the ID tools will be further evaluated
by training instructional designers, who are in-

experienced with the tools, for use in the design
of training programs in the domains of air traffic
control and aircraft maintenance.

Marcel B.M. de Croock [marcel.decroock@ou.nl],
Fred Paas, and Jeroen J.G. van Merriënboer are with
the Open University of the Netherlands. Henrik
Schlanbusch is with the University of Bergen,
Norway.
 The work presented in this article was carried out
within the ADAPTIT project. This project is sponsored
by the European Commission under contract
IST-1999-11740.
 Correspondence concerning this article should be
addressed to Marcel B.M. de Croock, Open
University of the Netherlands, Educational
Technology Expertise Center (OTEC), P.O. Box 2960,
NL-6401 DL Heerlen, The Netherlands.

REFERENCES

Blomberg, A.L., & Henderson, A. (1990). Reflections on
participatory design: Lessons from the trillium ex-
perience. In Conference proceedings on empowering
people: Human factors in computer systems. Special issue
of the SIGCHI bulletin (pp. 353–360). New York:
ACM.

Goel, V., & Pirolli, P. (1991). The structure of design
problem spaces. Cognitive Science, 16, 395–429.

Kirkpatrick, D.L. (1994). Evaluating training programs:
The four levels (2nd ed.). San Fransisco, CA: Berrett-
Koehler.

Newell, A., & Simon, H.A. (1972). Human problem solv-
ing. Englewood Cliffs, NJ: Prentice-Hall.

Nieveen, N., & Gustafson, K. (1999). Characteristics of
computer-based tools for education and training
development: An introduction. In J. van den Akker,
R. Branch, K. Gustafson, N. Nieveen, & T. Plomp
(Eds.), Design approaches and tools in education and
training (pp. 155–174). Dordrecht, The Netherlands:
Kluwer Academic Publishers.

Perez, R.S., Johnson, J.F., & Emery, C.D. (1995). In-
structional design expertise: A cognitive model of
design. Instructional Science, 23, 321–350.

Rowland, G. (1992). What do instructional designers
actually do? An initial investigation of expert prac-
tice. Performance Improvement Quarterly, 5(2), 65–86.

Sweller, J., van Merriënboer, J.J.G., & Paas, F.G.W.C.
(1998). Cognitive architecture and instructional
design. Educational Psychology Review, 10, 251–296.

van Merriënboer, J.J.G. (1997). Training complex cogni-
tive skills: A four-component instructional design model
for technical training. Englewood Cliffs, NJ: Educa-
tional Technology Publications.

AAH GRAPHICS, INC. / (540) 933-6210 / FAX 933-6523 / 11-26-2002 / 14:40

TOOLS FOR INSTRUCTIONAL DESIGN 57

van Merriënboer, J.J.G., Clark, R.E., & de Croock,
M.B.M. (2002). Blueprints for complex learning: The
4C/ID* model. Educational Technology Research and
Development, 50(2).

van Merriënboer, J.J.G., Kirschner, P.A., & Kester, L.
(submitted). Taking the load off a learner’s mind: In-

structional design for complex learning.
Wang, W. (2001). Evaluation reports of ISD related EPSS

products. Paper presented at the annual conference
of the Association for Educational Communications
and Technology (AECT), 7–9 November, Atlanta,
GA.

AAH GRAPHICS, INC. / (540) 933-6210 / FAX 933-6523 / 11-26-2002 / 14:40

58 ETR&D, Vol. 50, No. 4

